

Dubai Metro – Project Outline

Plan Design Enable

Dubai Metro – Project outline

Red & Green lines under construction

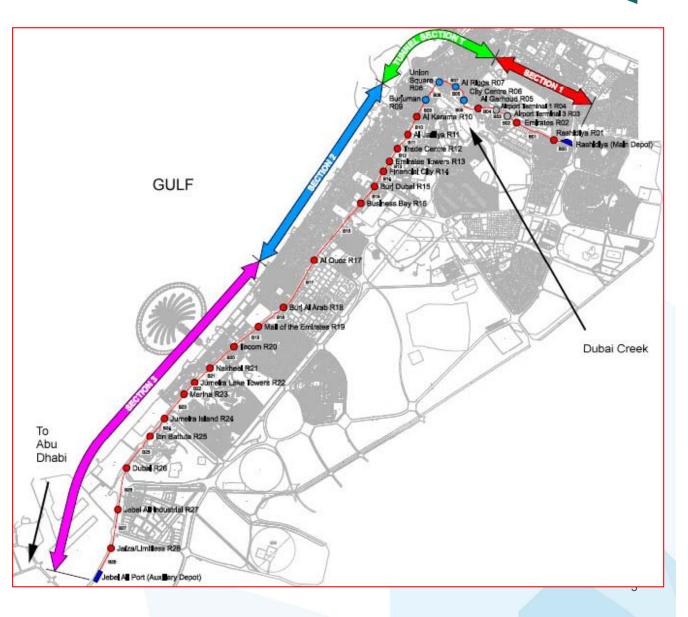
- Red Line Opened Sept 2009
- Green Line Opening 2011

Other lines to follow:

- Purple line
 - Airport express
- Blue line
 - Along Emirates Road

Dubai Metro will be:

- Driverless
- Fully-automated
- Longest in the world



Dubai Metro – Project outline

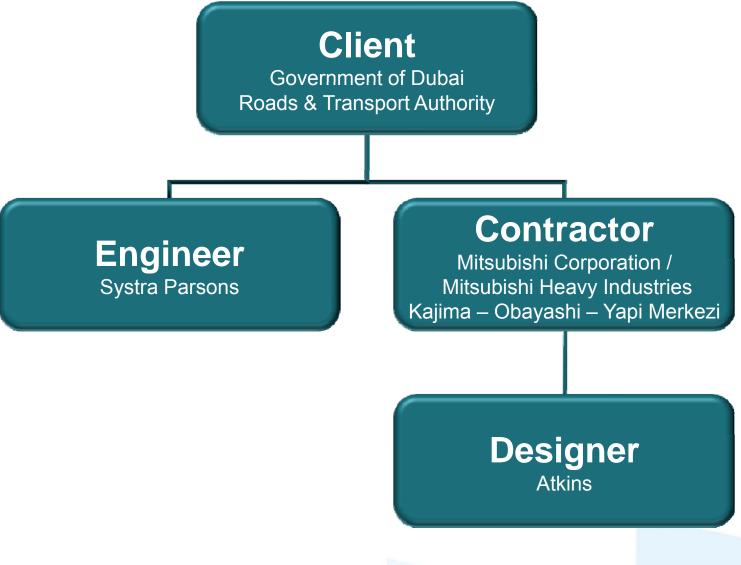
MKINS

Red line

- 52 km route
- 42 km viaduct
- 22 overground stations
- 5.5 km tunnels
- 4 underground stations
- 2 depots

Dubai Metro – Project outline

Green line


- 24 km route
- 16 km viaduct
- 12 overground stations
- 7.0 km tunnels
- 8 underground stations
- 1 depot

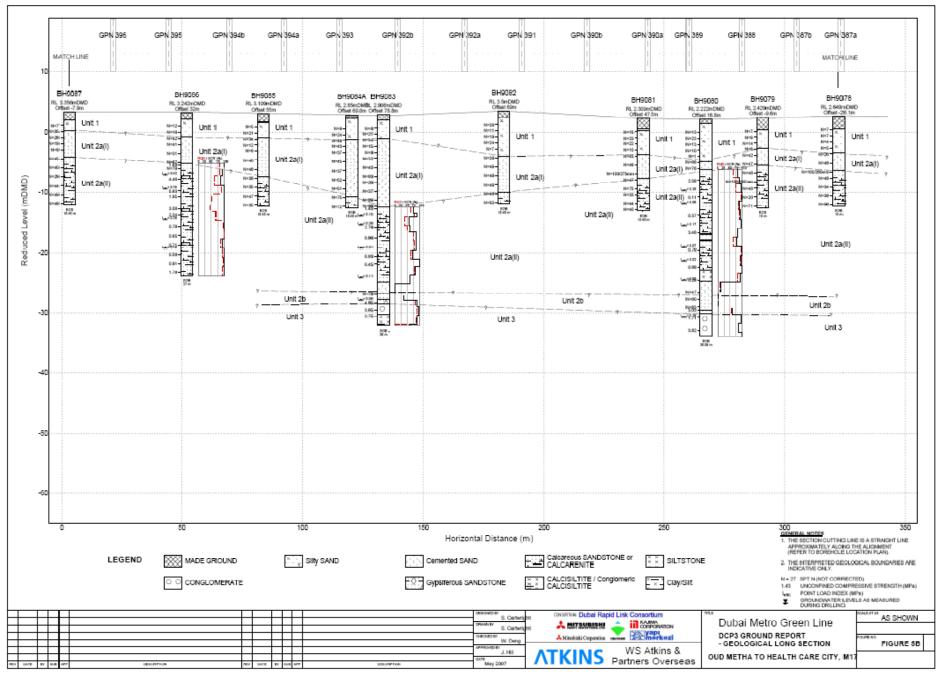
Dubai Metro – Project organisation

NTKINS

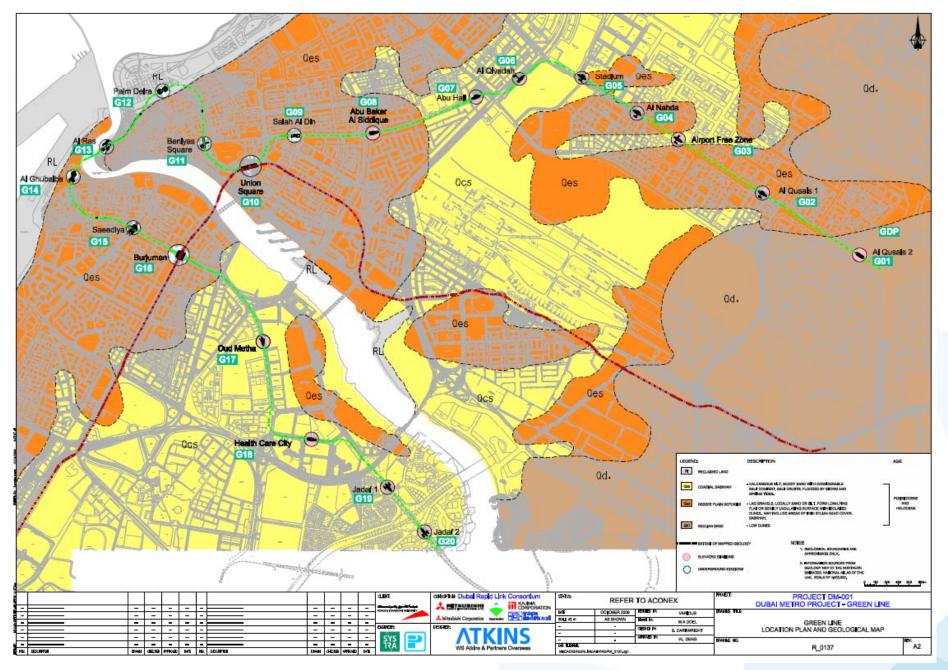
Plan Design Enable

NTKINS

Recent


Unit 1: Dune Sands & Sabkha Deposits

Pleistocene (2 million years)


- Unit 2a(i): Marine Sands, weakly cemented
- Unit 2a(ii): Marine Calcarenite, very weak to weak
- Unit 2b: Aeolian Gypsiferous Sandstone, very weak to weak

Mio-Pliocene – Barzaman Formation (20 million years)

Unit 3: Conglomerates, mudstones and siltstones (Wash from Hazar Mountains)

NTKINS

Dubai Metro – Geological Investigation

Plan Design Enable

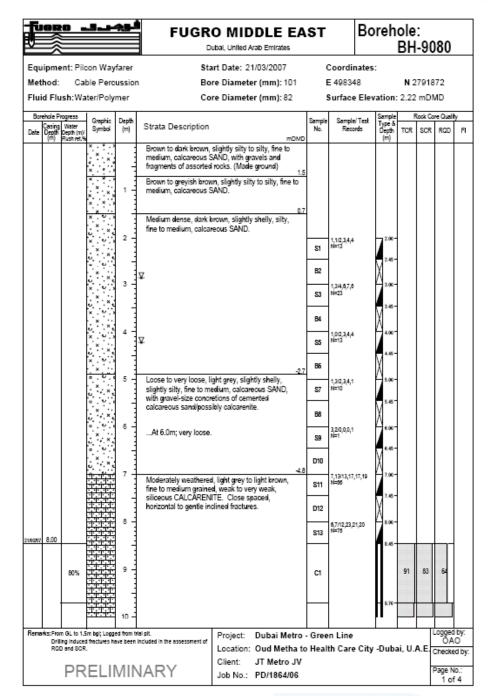
Red Line: Over 1200 boreholes and CPTs Green Line: Over 600 boreholes and CPTs

MTKINS

Cable Percussion Boring & Cone Penetration Testing

• Sands and Weakly Cemented Sands

Rotary Coring


• Sandstone, Calcisilitite, Conglomerate

In situ testing

- SPT
- In situ permeability

Laboratory Testing

- Moisture Content, PSD, Sulphate, pH on soils
- Point Load, Unconfined Compressive Strength on Rock

Unit 2a(i)

Unit 2a(ii)

Unit 2b

Dubai Metro – Derivation of Design Parameters

Plan Design Enable

Dubai Metro – Derivation of Design Parameters

- Design parameters derived by Atkins Dubai and agreed with the Engineer in Dubai
- Atkins Dubai produce a Ground Report and Pile Length Report
- No opportunity to re-negotiate design parameters
- Design parameters in soil and rock derived from SPT- N value and Unconfined Compressive Strength (UCS) respectively

Dubai Metro – Derivation of Design Parameters

Φ_{soil} from SPT N-value after Peck, Hanson and Thorburn
Φ_{rock} from triaxial test results

•c'_{rock} from c' = UCS_{mass}(1-sin Φ)/2 cos Φ

•E' _{soil} = 2.3N₆₀ MPa •E' _{rock} = 215 x UCS^{0.5}

 $f_{s(soil)} = 1.6N + 6 kPa after Decourt (1995)$ $f_{s(rock)} = 02.5 \text{ or } 0.35 \times (UCS_{design})^{0.5} after Zhang & Einstein (1998)$ $f_{b(rock)} = 2.5 \times (UCS_{design})^{0.5}$

Dubai Metro – Derivation of Design Parameters

Typical Design Parameters

		ν	γ _b (Mg/m³)	c' (kN/m²)	φ (°)	f _s (kN/m²)	E _{sv} ' (kN/m²)	E _{sh} ' (kN/m²)
Soil	Unit 1	0.25	1.9	0	30	14	21	15
	Unit 2a(i)	0.25	1.9	5	36	38	69	48
Rock	Unit 2a (ii)	0.2	2.0	72	39	270	180	126
	Unit 2b	0.2	2.0	60	39	210	167	117
	Unit 3	0.2	2.0	90	35	275	215	151

Dubai Metro – Viaduct Substructure Design

Plan Design Enable

Dubai Metro – Viaduct Substructure Design

Viaduct arrangement

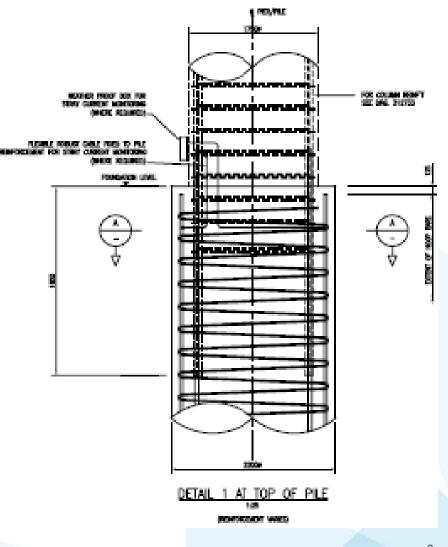
- Precast segmental construction
 - Single spans of 20m to 36m
 - Twin spans of either 44m+44m or 40m+40m made continuous after deck erection
 - 3-span continuous structures made by balanced cantilever method with main spans of 66m to 74m
 - 3-span or 4-span continuous structures of 30m to 36m through elevated stations

NTKINS

Dubai Metro – Viaduct Substructure Design **MTKINS**

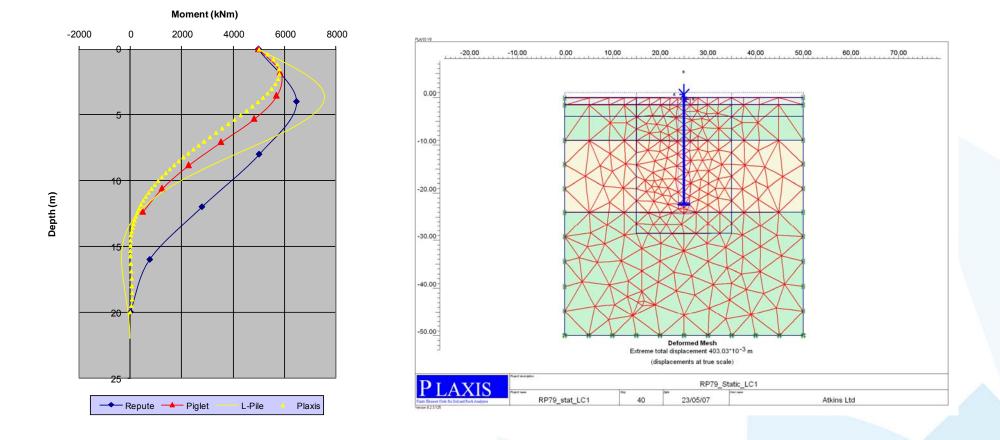
Pile design

- Single central piers typically 2.2m to 2.8m diameter
- Twin-pile groups, typically 1.6m to 1.8m diameter, used to span over existing services
- 4-pile groups, typically 1.6m to 1.8m diameter, for more heavily loaded internal piers of continuous spans
- Piles up to 40 metres long
- Lengths determined from critical SLS or ULS cases
 - Based on skin friction safety factors of 2.5 and 1.5 respectively
 - End bearing ignored


8

NTKINS

Dubai Metro – Viaduct Substructure Design


Pile Design (continued)

- Designed for durability in aggressive environment
 - Addition of waterproofing membrane to protect against chloride attack
 - Pile cover of 120mm to protect against sulphate attack
- Horizontal ground acceleration coefficient of 0.12g (ULS only)
- Centrifugal loading (plan curvature down to 300m)
- Self-weight of deck on curved sections of deck
- Wind
- Collision loads
- Rail-structure interaction

Dubai Metro – Viaduct Substructure Design Pile Analysis

 Load effects for reinforcement design generated by analysis using REPUTE program and verified using PLAXIS, PIGLET & L-PILE

MTKINS Dubai Metro – Viaduct Substructure Design

Pile Testing

- 3no piles tested
- Showed 2 x calculated ultimate skin friction and 50% calculated end bearing
- Recommended 0.35 $(UCS_{design})^{0.5}$ for polymer supported pile shaft and 0.25 $(UCS_{design})^{0.5}$ for bentonite supported pile shaft as minimum values
- Recommended $Q_{allow} = Qs + Q_b/2.5$

Dubai Metro – Viaduct Substructure Design

Pile Testing (continued)

Pile No.	Diameter (m)	Length (m)	Design SWL (kN)	Maximum Test Load (kN)	Settlement at SWL (mm)	Settlement at Max Load (mm)
OP1	2.2	20	13,500	54,000	1.4	6.9
OP3	2.2	25	11,000	24,750	2	5
OP4	1.5	20	9,500	38,000	2	12

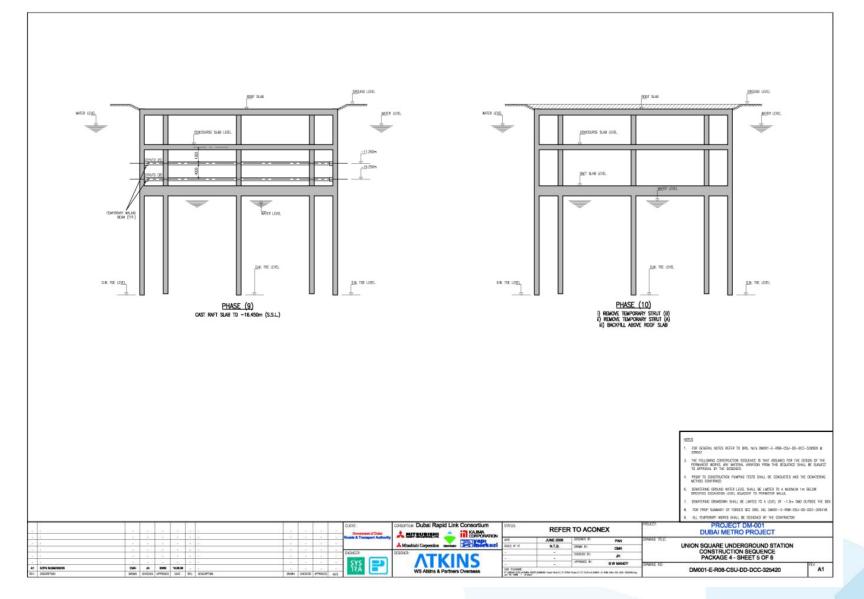
Plan Design Enable

- First Underground Station to be constructed
- On-line junction of Red and Green Lines
- Internal dimensions 50m x 250m
- Open aspect with few internal columns (25 metre span with internal columns)
- Drive shaft for all Red and Green Line tunnel drives

Design Considerations

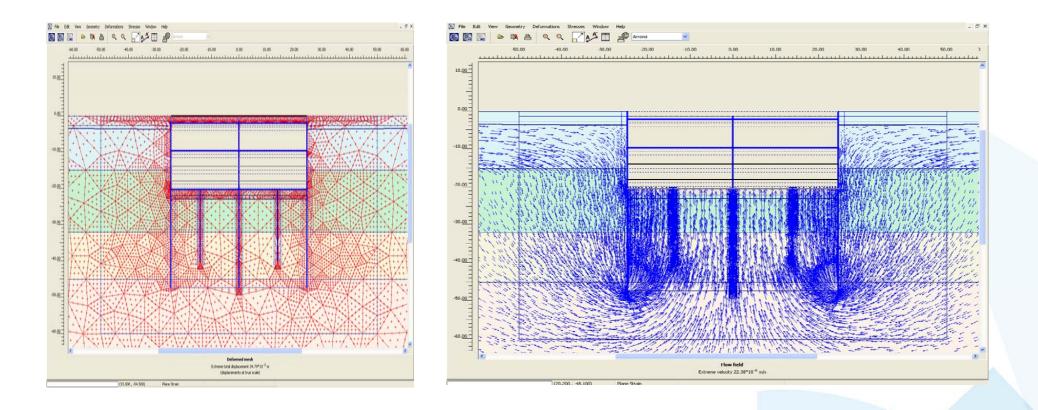
- Wall depth to -44.6mDMD to provide satisfactory FoS against flotation and reduce water ingress during construction (Tender design had grout plug)
- Base slab design to counteract uplift from 22 metres of water, 2.5 metres thick (tension barrettes)
- Wall design for high moments from large spans of slabs, 1200mm thick to optimise reinforcement density (reverse moment from uplift of base slab)
- Wall design to BS8110 and BS8007 (Reinforcement controlled by 0.2mm crack width requirement)

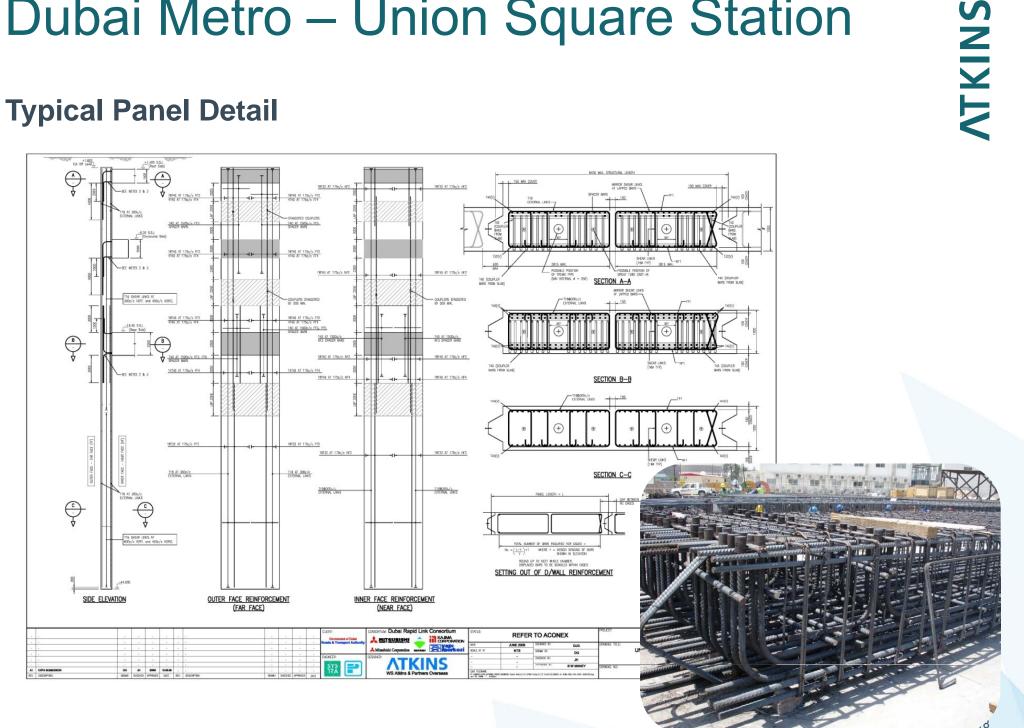
PACKAGE No. 2A PACKAGE No. (19) 21 (13) (15) (16) (17) (18) 20 (14) (22) D RA-230 829 876 50 280 6000 8 828 ACKAGE No. 1800 073 1 800 -2800-1 2800 1 PACKAGE No. 8 + + · R [842] - 3210 - FRA 1200 - FRAT-3800 154 005 867 PACKAGE No. 2 PACKAGE PACKAG FOR GENERAL NUTES REFER TO DRG No.'s DMSD1-E-ROB-DSU-DD-DCC-328500 & 32850 FOR ALIGNMENT SETTING OUT PETCH TO DRG NO DMOOT - E-DOB-CAT-DD-DDE-39(008-035) Dubai Rapid Link Consortiu PROJECT DM-001 DUBAI METRO PROJECT 8A 27/91/8 6A 30/01/8 6A 10/01/8 AE PANEL LAYOUT REV. 8A 22/12/8 AE PANEL LAYOUT REV. REFER TO ACONEX RR RR RR RR 2 8 1 7 1 8 Papi merkez UNION SQUARE UNDERGROUND STATION SETTING OUT PLAN SHEET 2 OF 2 TRAN IT * outrate de NR SA SELECT A4-104 DOPS SUBMERION NR SA 25.11.05 A4-004 SAVRETTE DOPS SU SAVRETTE DOPS SU RR SA 15.10.05 A3-004 FOR APPROVAL - 14 ΛΤΚΙΝS ANNEARD OF BWMANE


Panel Arrangement – Eastern End of Station Box

15

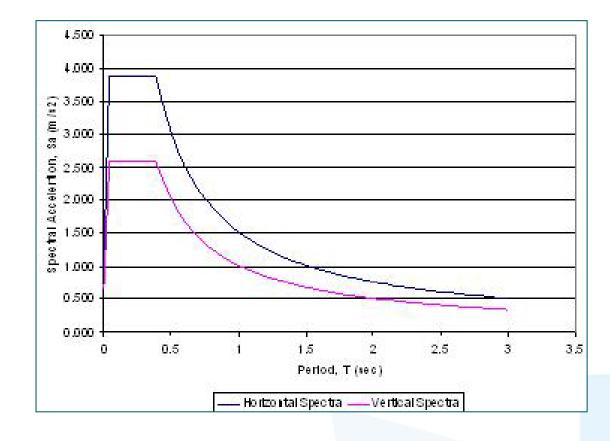
A6


DM001-E-R08-CSU-DD-DCC-325003


Typical sections through box

Design analysis

- Wall reinforcement design after CIRIA C580 using PLAXIS
- Flotation design using I. Struct. E. Guidelines for Basement design
- Settlement Analysis using approach after CIRIA C580


Dubai Metro – Questions

Plan Design Enable

Dubai Metro – Substructure design

Seismic analysis

- Nearest fault line is 120 km from UAE Zargos fault line
- Cautious approach because of use for evacuation "essential" to AASHTO
- AASHTO defined seismic response spectrum used with A = 0.12g
 - Site coefficient dependent on bearing type used

Dubai Metro – Substructure design

Column and pile design

- Once rules established, 1400+ unique foundations designed in 9 months
- Strict control procedures between design team & setting-out team
- Optimisation / automation process developed throughout
 - Process of seismic analysis and section checking automated by linked macros
 - Enabled peak output of 100 foundations to be designed per week

